论文标题

liouville类型的结果和对系统的量化效果$-ΔU= u J'(1- | u |^{2})$,用于零接近零的电位凸

A Liouville type result and quantization effects on the system $-Δu = u J'(1-|u|^{2})$ for a potential convex near zero

论文作者

De Maio, U., Hadiji, R., Lefter, C., Perugia, C.

论文摘要

我们考虑$-ΔU= u J'(1- | U |^{2})$的$ \ r^2 $中的Ginzburg-landau类型方程,具有潜在函数$ J $满足弱条件的潜在函数$ J $,例如,允许较弱的条件允许在原点中的无限顺序零。在这种情况下,我们扩展了有关H.Brezis,F.Merle,T.Rivière的有限潜在解决方案的结果,这些结果是\ cite {bmr}的,当$ j $在$ j $的情况下对情况进行治疗时,以及TH的结果。 Cazenave,在相同的参考文献中发现,以及有限能量解决方案的形式。

We consider a Ginzburg-Landau type equation in $\R^2$ of the form $-Δu = u J'(1-|u|^{2})$ with a potential function $J$ satisfying weak conditions allowing for example a zero of infinite order in the origin. We extend in this context the results concerning quantization of finite potential solutions of H.Brezis, F.Merle, T.Rivière from \cite{BMR} who treat the case when $J$ behaves polinomially near 0, as well as a result of Th. Cazenave, found in the same reference, and concerning the form of finite energy solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源