论文标题

遮挡场:非视线表面重建的隐式表示

Occlusion Fields: An Implicit Representation for Non-Line-of-Sight Surface Reconstruction

论文作者

Grau, Javier, Plack, Markus, Haehn, Patrick, Weinmann, Michael, Hullin, Matthias

论文摘要

非视线重建(NLOS)是一种新型的间接成像方式,旨在从视野外恢复对象或场景部分,从光线的测量值中间接地散布在直接可见的,弥漫性的壁上。尽管最近获得的采集和重建技术取得了进步,但该问题的各个问题以及尤其是物体及其形状的可恢复性仍然是一个悬而未决的问题。在这方面,常用的Fermat路径标准是相当保守的,因为它将某些表面归类为无法恢复的,尽管它们有助于信号。 在本文中,我们使用更简单的必要标准来回收不透明的表面贴片。从墙上的某个点可以直接可见这种表面,并且必须遮住自身背后的空间。受神经隐性表示的最新进展的启发,我们为NLOS场景设计了一种新的表示和重建技术,该技术将可恢复性的处理与重建本身统一。我们在各种合成和实验数据集上验证的方法具有有趣的特性。与内存的体积表示不同,我们的允许从中等分辨率的飞行时间测量来推断出适应性的镶嵌表面。它可以进一步恢复超出Fermat路径标准的功能,并且对大量的自​​我概括是鲁棒的。我们认为,这是在一个系统中首次实现这些属性,这是一个额外的好处,因此可以训练,因此适合于数据驱动的方法。

Non-line-of-sight reconstruction (NLoS) is a novel indirect imaging modality that aims to recover objects or scene parts outside the field of view from measurements of light that is indirectly scattered off a directly visible, diffuse wall. Despite recent advances in acquisition and reconstruction techniques, the well-posedness of the problem at large, and the recoverability of objects and their shapes in particular, remains an open question. The commonly employed Fermat path criterion is rather conservative with this regard, as it classifies some surfaces as unrecoverable, although they contribute to the signal. In this paper, we use a simpler necessary criterion for an opaque surface patch to be recoverable. Such piece of surface must be directly visible from some point on the wall, and it must occlude the space behind itself. Inspired by recent advances in neural implicit representations, we devise a new representation and reconstruction technique for NLoS scenes that unifies the treatment of recoverability with the reconstruction itself. Our approach, which we validate on various synthetic and experimental datasets, exhibits interesting properties. Unlike memory-inefficient volumetric representations, ours allows to infer adaptively tessellated surfaces from time-of-flight measurements of moderate resolution. It can further recover features beyond the Fermat path criterion, and it is robust to significant amounts of self-occlusion. We believe that this is the first time that these properties have been achieved in one system that, as an additional benefit, is trainable and hence suited for data-driven approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源