论文标题

人工智能通过神经界面实现对假体的实时和直观控制

Artificial Intelligence Enables Real-Time and Intuitive Control of Prostheses via Nerve Interface

论文作者

Luu, Diu Khue, Nguyen, Anh Tuan, Jiang, Ming, Drealan, Markus W., Xu, Jian, Wu, Tong, Tam, Wing-kin, Zhao, Wenfeng, Lim, Brian Z. H., Overstreet, Cynthia K., Zhao, Qi, Cheng, Jonathan, Keefer, Edward W., Yang, Zhi

论文摘要

目的:下一代的假肢移动和感觉就像是一只真实的手,需要人类思想和机器之间的牢固的神经互连。方法:在这里,我们提出了一个神经假体系统,可以通过使用人工智能(AI)代理来通过外周神经界面转化截肢者的运动来证明该原理。 AI代理是基于复发性神经网络(RNN)设计的,可以同时实时从多通道神经数据中解码六个自由度(DOF)。解码器的性能在三个人类截肢者的运动解码实验中具有特征。结果:首先,我们显示AI代理使截肢者能够用单独的手指和手腕动作直观地控制假肢的精度。其次,我们通过测量手势匹配任务中的反应时间和信息吞吐量来演示AI代理的实时性能。第三,我们研究了AI代理的长期用途,并在16个月的植入期间显示了解码器的稳健预测性能。结论和意义:我们的研究证明了AI启用神经技术的潜力,这是下一代灵巧和直观的假肢的潜力。

Objective: The next generation prosthetic hand that moves and feels like a real hand requires a robust neural interconnection between the human minds and machines. Methods: Here we present a neuroprosthetic system to demonstrate that principle by employing an artificial intelligence (AI) agent to translate the amputee's movement intent through a peripheral nerve interface. The AI agent is designed based on the recurrent neural network (RNN) and could simultaneously decode six degree-of-freedom (DOF) from multichannel nerve data in real-time. The decoder's performance is characterized in motor decoding experiments with three human amputees. Results: First, we show the AI agent enables amputees to intuitively control a prosthetic hand with individual finger and wrist movements up to 97-98% accuracy. Second, we demonstrate the AI agent's real-time performance by measuring the reaction time and information throughput in a hand gesture matching task. Third, we investigate the AI agent's long-term uses and show the decoder's robust predictive performance over a 16-month implant duration. Conclusion & significance: Our study demonstrates the potential of AI-enabled nerve technology, underling the next generation of dexterous and intuitive prosthetic hands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源