论文标题

扩展的车辆能源数据集(EVED):增强的大规模数据集,用于深度学习车辆旅行能源消耗

Extended vehicle energy dataset (eVED): an enhanced large-scale dataset for deep learning on vehicle trip energy consumption

论文作者

Zhang, Shiliang, Fatih, Dyako, Abdulqadir, Fahmi, Schwarz, Tobias, Ma, Xuehui

论文摘要

这项工作介绍了车辆能量数据集(VED)的扩展版本,该版本是公开发布的大型数据集,用于车辆能源消耗分析。与其原始版本相比,扩展的VED(EVED)数据集通过准确的车辆旅行GPS坐标增强了增强,这是将VED Trip记录与外部信息(例如,道路速度限制和交叉点)相关联的基础,从可访问的地图服务到累积属性,以累积在分析车辆能源消费中至关重要的属性。尤其是,我们校准了原始VED数据中的所有GPS跟踪记录,并将其与从地理信息系统(QGIS),立交桥API,Open Street Map API和Google Map API中提取的属性相关联。相关属性包括12,609,170条道路海拔记录,12,203,044的速度限制,12,281,719速度限制(如果道路为双向),相互距离为584,551个,相互作用的584,551,429,638的公共汽车站,312,196的跨越跨越,312,196个交叉点,195,856架29.8556 sign,856.8556 sign,856.856.856.856。 5,848个转弯,4,053个铁路交叉路口(级别的交叉路口),3,554个转弯圈和2,938个高速公路交界处。凭借准确的GPS坐标和车辆旅行记录的丰富功能,获得的EVEV数据集可以提供精确而丰富的介质来喂养学习引擎,尤其是对数据充足性和丰富性的深度学习引擎。此外,我们可以重复使用用于数据校准和丰富的软件工作,以生成针对特定用户案例的进一步的车辆跳闸数据集,从而有助于深入了解车辆行为和交通动态分析。我们预计,EV的数据集和我们的数据丰富软件可以作为开发未来技术的设备为学术和工业汽车部分服务。

This work presents an extended version of the Vehicle Energy Dataset (VED), which is a openly released large-scale dataset for vehicle energy consumption analysis. Compared with its original version, the extended VED (eVED) dataset is enhanced with accurate vehicle trip GPS coordinates, serving as a basis to associate the VED trip records with external information, e.g., road speed limit and intersections, from accessible map services to accumulate attributes that is essential in analyzing vehicle energy consumption. In particularly, we calibrate all the GPS trace records in the original VED data, upon which we associated the VED data with attributes extracted from the Geographic Information System (QGIS), the Overpass API, the Open Street Map API, and Google Maps API. The associated attributes include 12,609,170 records of road elevation, 12,203,044 of speed limit, 12,281,719 of speed limit with direction (in case the road is bi-directional), 584,551 of intersections, 429,638 of bus stop, 312,196 of crossings, 195,856 of traffic signals, 29,397 of stop signs, 5,848 of turning loops, 4,053 of railway crossings (level crossing), 3,554 of turning circles, and 2,938 of motorway junctions. With the accurate GPS coordinates and enriched features of the vehicle trip record, the obtained eVED dataset can provide a precise and abundant medium to feed a learning engine, especially a deep learning engine that is more demanding on data sufficiency and richness. Moreover, our software work for data calibration and enrichment can be reused to generate further vehicle trip datasets for specific user cases, contributing to deep insights into vehicle behaviors and traffic dynamics analyses. We anticipate that the eVED dataset and our data enrichment software can serve the academic and industrial automotive section as apparatus in developing future technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源