论文标题

某些图的符号力量的规律性

Regularity of symbolic powers of certain graphs

论文作者

Chakraborty, Bidwan, Mandal, Mousumi

论文摘要

令$ g_ {n,r} $用$ n $ vertices $ \ {x_1,\ ldots,x_n \} $按循环顺序进行,对于每个顶点$ x_i $,请考虑集合$ a_i = \ {x_ {x_ {i-r},\ ldots,x_ {i-1},x_ {i+1},x_ {i+2},\ ldots,x_ {i+r} \},$ $ 0 \ leq r \ leq \ bigl \ lfloor \ dfrac {n} {2} {2} \ bigr \ rfloor -1 $。在$ g_ {n,r} $中,每个顶点$ x_i $都与$ v(g_ {n,r})\ backslash a_i $的所有顶点相邻。令$ i = i(g_ {n,r})$为$ g_ {n,r} $的边缘理想。我们表明,明尼的猜想是$ i,$ $,即普通权力的规律性和$ i $的符号权力是相同的。我们计算整个班级的Waldschmidt常数和复兴。

Let $G_{n,r}$ denote the graph with $n$ vertices $\{x_1,\ldots,x_n\}$ in cyclic order and for each vertex $x_i$ consider the set $A_i=\{x_{i-r},\ldots,x_{i-1},x_{i+1},x_{i+2},\ldots, x_{i+r}\},$ where $x_{i-j}$ is the vertex $x_{n+i-j}$, whenever $i<j$ and $0\leq r\leq \Bigl\lfloor\dfrac{n}{2}\Bigr\rfloor -1$. In $G_{n,r}$, every vertex $x_i$ is adjacent to all the vertices of $V(G_{n,r})\backslash A_i$. Let $I=I(G_{n,r})$ be the edge ideal of $G_{n,r}$. We show that Minh's conjecture is true for $I,$ i.e. regularity of ordinary powers and symbolic powers of $I$ are equal. We compute the Waldschmidt constant and resurgence for the whole class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源