论文标题
horndeski理论中的vainshtein筛选非微小和动力学耦合到普通物质
Vainshtein screening in Horndeski theories nonminimally and kinetically coupled to ordinary matter
论文作者
论文摘要
我们在标量场的存在下,非界限和动力学与普通物质领域的标量$ ϕ $研究,研究Horndeski理论中的Vainshtein筛选机制。描述这种耦合的一般互动拉格朗日的特征是能量转移$ f_1 $和动量交换$ f_2 $。对于宇宙学背景顶部的球形对称配置,我们研究了相对于标量场扰动的线性和非线性方案中的静态扰动。在以前的制度中,只要存在物质耦合或$ g_ {4,ϕ} $,纽顿后参数的参数通常会偏离统一。另一方面,在后一种制度中,我们表明,标量字段的非线性自身交流项即使在存在耦合$ f_1 $和$ f_2 $的情况下,也能成功激活Vainshtein机制。引力电位恢复了牛顿半径内深处的牛顿行为。还给出了耦合术语的界限,但还没有实质性地改变Vainshtein半径。
We study the Vainshtein screening mechanism in Horndeski theories in the presence of a scalar field $ϕ$ nonminimally and kinetically coupled to ordinary matter field. A general interacting Lagrangian describing this coupling is characterized by energy transfer $f_1$ and momentum exchange $f_2$. For a spherically symmetric configurations on top of the cosmological background, we investigate the static perturbations in linear and nonlinear regimes with respect to the scalar field perturbation. In the former regime, the parametrized post-Newtonian parameter generally deviates from unity as long as the matter coupling or $G_{4,ϕ}$ exists. On the other hand, in the latter regime, we show that the nonlinear self-interaction term of scalar field successfully activates the Vainshtein mechanism even in the presence of the couplings $f_1$ and $f_2$. The gravitational potentials recover the Newtonian behavior deep inside the Vainshtein radius. The bounds on coupling terms not to substantially change the Vainshtein radius are also given.