论文标题

tegtok:通过特定任务和开放世界的知识增强文本生成

TegTok: Augmenting Text Generation via Task-specific and Open-world Knowledge

论文作者

Tan, Chao-Hong, Gu, Jia-Chen, Tao, Chongyang, Ling, Zhen-Hua, Xu, Can, Hu, Huang, Geng, Xiubo, Jiang, Daxin

论文摘要

在NLP中,生成自然和信息丰富的文本一直是一个长期存在的问题。已经将很多努力用于将预训练的语言模型(PLM)与各种开放世界的知识(例如知识图或Wiki页面)合并在一起。但是,他们访问和操纵特定任务知识的能力仍然受到下游任务的限制,因为这种类型的知识通常在PLM中覆盖不佳,而且很难获得。为了解决这个问题,我们在统一框架中通过特定于任务和开放世界知识(TEGTOK)提出了增强文本生成。我们的模型通过密集检索从两种类型的知识源选择知识条目,然后根据PLM分别将其注入输入编码和输出解码阶段。在这两种类型的知识的帮助下,我们的模型可以学习什么以及如何生成。对对话生成和问题生成的两个文本生成任务以及两个数据集的实验表明,我们的方法比各种基线模型都能达到更好的性能。

Generating natural and informative texts has been a long-standing problem in NLP. Much effort has been dedicated into incorporating pre-trained language models (PLMs) with various open-world knowledge, such as knowledge graphs or wiki pages. However, their ability to access and manipulate the task-specific knowledge is still limited on downstream tasks, as this type of knowledge is usually not well covered in PLMs and is hard to acquire. To address the problem, we propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework. Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively on the basis of PLMs. With the help of these two types of knowledge, our model can learn what and how to generate. Experiments on two text generation tasks of dialogue generation and question generation, and on two datasets show that our method achieves better performance than various baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源