论文标题
Pointattn:您只需要注意点云完成
PointAttN: You Only Need Attention for Point Cloud Completion
论文作者
论文摘要
点云完成是指从部分3D点云中完成3D形状是3D点云分析任务的基本问题。从深度神经网络的发展中受益,近年来对Point Cloud完成的研究取得了长足的进步。但是,现有方法所涉及的明确局部区域分区使它们对点云的密度分布敏感。此外,它提供有限的接收场,可防止从远程上下文信息中捕获功能。为了解决这些问题,我们利用跨注意和自我注意的机制来设计新颖的神经网络,以每点方式处理点云以消除KNN。提出了两个基本块几何细节感知(GDP)和自我功能增强(SFA),以通过注意机制以简单而有效的方式直接在点之间建立短程和远程结构关系。然后,基于GDP和SFA,我们构建了一个新的框架,该框架使用流行的编码器架构进行点云完成。所提出的框架,即Pointattn,简单,整洁且有效,可以精确地捕获3D形状的结构信息,并预测具有高度详细几何形状的完整点云。实验结果表明,我们的PointAttn在流行的基准测试(如Ploteion3D和PCN)上的优于最先进的方法。代码可在:https://github.com/ohhhyeahhh/pointattn上找到
Point cloud completion referring to completing 3D shapes from partial 3D point clouds is a fundamental problem for 3D point cloud analysis tasks. Benefiting from the development of deep neural networks, researches on point cloud completion have made great progress in recent years. However, the explicit local region partition like kNNs involved in existing methods makes them sensitive to the density distribution of point clouds. Moreover, it serves limited receptive fields that prevent capturing features from long-range context information. To solve the problems, we leverage the cross-attention and self-attention mechanisms to design novel neural network for processing point cloud in a per-point manner to eliminate kNNs. Two essential blocks Geometric Details Perception (GDP) and Self-Feature Augment (SFA) are proposed to establish the short-range and long-range structural relationships directly among points in a simple yet effective way via attention mechanism. Then based on GDP and SFA, we construct a new framework with popular encoder-decoder architecture for point cloud completion. The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes and predict complete point clouds with highly detailed geometries. Experimental results demonstrate that our PointAttN outperforms state-of-the-art methods by a large margin on popular benchmarks like Completion3D and PCN. Code is available at: https://github.com/ohhhyeahhh/PointAttN