论文标题
逐渐张量的形状检查
Gradual Tensor Shape Checking
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Tensor shape mismatch is a common source of bugs in deep learning programs. We propose a new type-based approach to detect tensor shape mismatches. One of the main features of our approach is the best-effort shape inference. As the tensor shape inference problem is undecidable in general, we allow static type/shape inference to be performed only in a best-effort manner. If the static inference cannot guarantee the absence of the shape inconsistencies, dynamic checks are inserted into the program. Another main feature is gradual typing, where users can improve the precision of the inference by adding appropriate type annotations to the program. We formalize our approach and prove that it satisfies the criteria of gradual typing proposed by Siek et al. in 2015. We have implemented a prototype shape checking tool based on our approach and evaluated its effectiveness by applying it to some deep neural network programs.