论文标题
部分可观测时空混沌系统的无模型预测
Detecting entanglement in quantum many-body systems via permutation moments
论文作者
论文摘要
多部分纠缠在量子信息科学和多体物理学中都起着至关重要的作用。由于状态空间的指数较大的维度和复杂的几何结构,在现实中,多体系统中纠缠的检测非常具有挑战性。常规手段,例如纠缠证人和熵标准,高度依赖于研究系统的先验知识,或者检测能力相对较弱。在这项工作中,我们提出了一个基于置换矩时设计多部分纠缠标准的框架,该框架具有有效的实现,该框架具有通用的控制 - 量量量子电路或随机的单一技术。这些标准在具有远距离$ xy $ hamiltonian的多量伊辛模型中显示出强大的检测能力。与这些标准相关的数量具有明确的物理含义,可以用作纠缠量词,我们在量子动力学相变中显示了纠缠缩放的跃迁。此外,我们的框架也可以推广,以检测量子多体系统中更复杂的纠缠结构。
Multipartite entanglement plays an essential role in both quantum information science and many-body physics. Due to the exponentially large dimension and complex geometric structure of the state space, the detection of entanglement in many-body systems is extremely challenging in reality. Conventional means, like entanglement witness and entropy criterion, either highly depend on the prior knowledge of the studied systems or the detection capability is relatively weak. In this work, we propose a framework for designing multipartite entanglement criteria based on permutation moments, which have an effective implementation with either the generalized control-SWAP quantum circuits or the random unitary techniques. These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian. The quantities associated with these criteria have clear physical meaning and can be used as entanglement quantifiers, with which we show the entanglement scaling transition in a quantum dynamical phase transition. Furthermore, our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.