论文标题
主题采矿:查找和总结混合图像内容
Motif Mining: Finding and Summarizing Remixed Image Content
论文作者
论文摘要
在互联网上,图像不再是静态的。它们已成为动态的内容。得益于具有相机和易于使用的编辑软件的智能手机的可用性,可以在畅通无阻的情况下(即编辑,编辑和与其他内容重新组合)以及与可以重复该过程的全球受众进行混音。从数字艺术到模因,对于数字人文主义者,社会科学家和媒体取证专家来说,图像的演变是一个重要的研究主题。但是,由于计算机视觉中的典型数据集由静态内容组成,因此开发自动化算法以分析混合内容的内容受到限制。在本文中,我们介绍了主题开采的想法 - 在大量未标记和未分类数据中查找和汇总混合图像内容的过程。在本文中,这个想法是形式化的,并引入了参考实现。实验是在三个模因风格的数据集上进行的,包括与Russo-Ikrainian冲突中的信息战相关的新收集的集合。所提出的基序挖掘方法能够识别相关的混合内容,与类似方法相比,这些内容与人类观察者的偏好和期望更加一致。
On the internet, images are no longer static; they have become dynamic content. Thanks to the availability of smartphones with cameras and easy-to-use editing software, images can be remixed (i.e., redacted, edited, and recombined with other content) on-the-fly and with a world-wide audience that can repeat the process. From digital art to memes, the evolution of images through time is now an important topic of study for digital humanists, social scientists, and media forensics specialists. However, because typical data sets in computer vision are composed of static content, the development of automated algorithms to analyze remixed content has been limited. In this paper, we introduce the idea of Motif Mining - the process of finding and summarizing remixed image content in large collections of unlabeled and unsorted data. In this paper, this idea is formalized and a reference implementation is introduced. Experiments are conducted on three meme-style data sets, including a newly collected set associated with the information war in the Russo-Ukrainian conflict. The proposed motif mining approach is able to identify related remixed content that, when compared to similar approaches, more closely aligns with the preferences and expectations of human observers.