论文标题

零射击跨语性事件参数提取的多语言生成语言模型提取

Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction

论文作者

Huang, Kuan-Hao, Hsu, I-Hung, Natarajan, Premkumar, Chang, Kai-Wei, Peng, Nanyun

论文摘要

我们介绍了一项有关利用多语言预训练的生成语言模型的研究,以进行零击的跨语性事件参数提取(EAE)。通过将EAE制定为语言生成任务,我们的方法有效地编码了事件结构并捕获参数之间的依赖关系。我们设计语言敏捷的模板以表示事件参数结构,这些模板与任何语言兼容,从而有助于跨语性转移。我们提出的模型FINETUNES多语言预训练的生成语言模型,以生成句子,这些句子填充语言不可能的模板,并从输入段落中提取的参数。该模型对源语言进行培训,然后直接应用于目标语言以进行事件参数提取。实验表明,所提出的模型的表现优于零击跨语言EAE上的当前最新模型。提出了全面的研究和错误分析,以更好地了解将生成语言模型用于零拍的跨语性转移EAE的优势和局限性。

We present a study on leveraging multilingual pre-trained generative language models for zero-shot cross-lingual event argument extraction (EAE). By formulating EAE as a language generation task, our method effectively encodes event structures and captures the dependencies between arguments. We design language-agnostic templates to represent the event argument structures, which are compatible with any language, hence facilitating the cross-lingual transfer. Our proposed model finetunes multilingual pre-trained generative language models to generate sentences that fill in the language-agnostic template with arguments extracted from the input passage. The model is trained on source languages and is then directly applied to target languages for event argument extraction. Experiments demonstrate that the proposed model outperforms the current state-of-the-art models on zero-shot cross-lingual EAE. Comprehensive studies and error analyses are presented to better understand the advantages and the current limitations of using generative language models for zero-shot cross-lingual transfer EAE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源