论文标题
主动探索可变场景的神经全球照明
Active Exploration for Neural Global Illumination of Variable Scenes
论文作者
论文摘要
神经渲染算法介绍了一种从根本上开始的,以实现逼真的渲染,通常是通过在大量地面真实图像上学习照明的神经表示。当训练给定的变量场景(即更改对象,材料,灯光和观点)时,随着可变参数的尺寸的增加,可能的培训数据实例的空间很快变得难以控制。我们使用马尔可夫链蒙特卡洛(Monte Carlo)介绍了一种新型的主动探索方法,该方法探索D,生成样品(即地面真相渲染),最能帮助训练和交错培训和在迅速的样本数据生成中。我们介绍了一种自我调整的样本重用策略,以最大程度地减少渲染培训样本的昂贵步骤。我们将方法应用于神经发电机,该神经发电机学会呈现新颖的场景实例,并在场景配置中明确参数化。我们的结果表明,主动探索比统一的采样更有效地训练我们的网络,并且与我们的分辨率增强方法相比,质量比收敛时均匀的采样更好。我们的方法允许对硬光传输路径的交互式渲染(例如,复杂的苛性速度)(需要非常高的样品数量计数),并在训练5-18小时后,根据所需的质量和变化,提供了动态的场景导航和操纵。
Neural rendering algorithms introduce a fundamentally new approach for photorealistic rendering, typically by learning a neural representation of illumination on large numbers of ground truth images. When training for a given variable scene, i.e., changing objects, materials, lights and viewpoint, the space D of possible training data instances quickly becomes unmanageable as the dimensions of variable parameters increase. We introduce a novel Active Exploration method using Markov Chain Monte Carlo, which explores D, generating samples (i.e., ground truth renderings) that best help training and interleaves training and on-the-fly sample data generation. We introduce a self-tuning sample reuse strategy to minimize the expensive step of rendering training samples. We apply our approach on a neural generator that learns to render novel scene instances given an explicit parameterization of the scene configuration. Our results show that Active Exploration trains our network much more efficiently than uniformly sampling, and together with our resolution enhancement approach, achieves better quality than uniform sampling at convergence. Our method allows interactive rendering of hard light transport paths (e.g., complex caustics) -- that require very high samples counts to be captured -- and provides dynamic scene navigation and manipulation, after training for 5-18 hours depending on required quality and variations.