论文标题

Laakso图的公制嵌入到Banach空间中

Metric embeddings of Laakso graphs into Banach spaces

论文作者

Dilworth, S. J., Kutzarova, Denka, Stankov, Svetozar

论文摘要

令$ x $为Banach Space,它不是超反射的。然后,对于每种$ n \ ge1 $和$ \ varepsilon> 0 $,我们展示了Laakso Graph $ \ Mathcal {l} _n $的公制嵌入到$ x $中,失真小于$ 2+\ varepsilon $,并带有$ l_1 [0,1] $ 4/3 $ 4/3 $。 $ \ Mathcal {l} _2 $(分别是钻石图$ d_2 $)嵌入$ \ MATHCAL {0,1] $的嵌入变形至少为$ 9/8 $(分别分别为$ 5/4 $)。

Let $X$ be Banach space which is not super-reflexive. Then, for each $n\ge1$ and $\varepsilon>0$, we exhibit metric embeddings of the Laakso graph $\mathcal{L}_n$ into $X$ with distortion less than $2+\varepsilon$ and into $L_1[0,1]$ with distortion $4/3$. The distortion of an embedding of $\mathcal{L}_2$ (respectively, the diamond graph $D_2$) into $L_1[0,1]$ is at least $9/8$ (respectively, $5/4$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源