论文标题

使用Dataless神经网络组合优化的一种可区分方法

A Differentiable Approach to Combinatorial Optimization using Dataless Neural Networks

论文作者

Alkhouri, Ismail R., Atia, George K., Velasquez, Alvaro

论文摘要

机器学习解决方案对离散结构的推理的成功引起了对组合优化算法中其采用的关注。这种方法通常通过利用来自某些问题实例分布的感兴趣的组合结构的数据集来依赖于监督学习。还采用了强化学习来找到此类结构。在本文中,我们提出了一种根本不同的方法,因为训练产生解决方案的神经网络不需要数据。特别是,我们将组合优化问题减少到神经网络,并采用数据训练方案来完善网络的参数,从而使这些参数产生感兴趣的结构。我们考虑了图中找到最大独立集和最大簇的组合优化问题。原则上,由于这些问题属于NP-HARD复杂性类别,因此我们提出的方法可用于解决任何其他NP硬性问题。此外,我们提出了一个通用图还原程序来处理大规模图。还原利用用于图形分配的社区检测,适用于任何图类型和/或密度。对合成图和现实世界基准的实验评估表明,我们的方法在不需要任何数据的情况下以最先进的启发式,增强学习和基于机器学习的方法执行或胜过最先进的启发式,增强学习和基于机器学习的方法。

The success of machine learning solutions for reasoning about discrete structures has brought attention to its adoption within combinatorial optimization algorithms. Such approaches generally rely on supervised learning by leveraging datasets of the combinatorial structures of interest drawn from some distribution of problem instances. Reinforcement learning has also been employed to find such structures. In this paper, we propose a radically different approach in that no data is required for training the neural networks that produce the solution. In particular, we reduce the combinatorial optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest. We consider the combinatorial optimization problems of finding maximum independent sets and maximum cliques in a graph. In principle, since these problems belong to the NP-hard complexity class, our proposed approach can be used to solve any other NP-hard problem. Additionally, we propose a universal graph reduction procedure to handle large scale graphs. The reduction exploits community detection for graph partitioning and is applicable to any graph type and/or density. Experimental evaluation on both synthetic graphs and real-world benchmarks demonstrates that our method performs on par with or outperforms state-of-the-art heuristic, reinforcement learning, and machine learning based methods without requiring any data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源