论文标题

使用分层自适应正交正交的最佳阻尼,以在Lévy模型中有效的多资产选项的傅立叶定价

Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models

论文作者

Samet, Michael, Bayer, Christian, Hammouda, Chiheb Ben, Papapantoleon, Antonis, Tempone, Raúl

论文摘要

有效定价多资产选择是定量融资中的一个具有挑战性的问题。当具有特征函数时,与替代技术相比,基于傅立叶的方法具有竞争力,因为频率空间中的积分通常比物理空间中的规律性更高。但是,在为大多数傅立叶定价方法设计数值正交方法时,应仔细考虑影响数值复杂性的两个关键方面:(i)选择阻尼参数,以确保积分和控制集成的正常性类别和(ii)高维度的有效处理。我们提出了一种基于两个补充思想来应对这些挑战的有效数值方法,用于定价欧洲多资产选择。首先,我们通过基于建议的优化规则对阻尼参数的优化选择来平滑傅立叶集成。其次,我们采用稀疏和维度适应技术来加速高维数字的正交收敛性。多变量几何布朗运动和一些莱维模型下的篮子和彩虹选项的广泛数值研究证明了适应性的优势和对正交方法的数值复杂性的阻尼规则。此外,对于经过测试的两个资产示例,所提出的方法在计算时间方面优于cos方法。最后,与蒙特卡洛方法相比,我们显示出明显的加速,最多可达六个维度。

Efficiently pricing multi-asset options is a challenging problem in quantitative finance. When the characteristic function is available, Fourier-based methods are competitive compared to alternative techniques because the integrand in the frequency space often has a higher regularity than that in the physical space. However, when designing a numerical quadrature method for most Fourier pricing approaches, two key aspects affecting the numerical complexity should be carefully considered: (i) the choice of damping parameters that ensure integrability and control the regularity class of the integrand and (ii) the effective treatment of high dimensionality. We propose an efficient numerical method for pricing European multi-asset options based on two complementary ideas to address these challenges. First, we smooth the Fourier integrand via an optimized choice of the damping parameters based on a proposed optimization rule. Second, we employ sparsification and dimension-adaptivity techniques to accelerate the convergence of the quadrature in high dimensions. The extensive numerical study on basket and rainbow options under the multivariate geometric Brownian motion and some Lévy models demonstrates the advantages of adaptivity and the damping rule on the numerical complexity of quadrature methods. Moreover, for the tested two-asset examples, the proposed approach outperforms the COS method in terms of computational time. Finally, we show significant speed-up compared to the Monte Carlo method for up to six dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源