论文标题

部分可观测时空混沌系统的无模型预测

Animatable Implicit Neural Representations for Creating Realistic Avatars from Videos

论文作者

Peng, Sida, Xu, Zhen, Dong, Junting, Wang, Qianqian, Zhang, Shangzhan, Shuai, Qing, Bao, Hujun, Zhou, Xiaowei

论文摘要

本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非偶像变形的场景分解为规范的神经辐射场和一组变形场,这些变形场映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转化矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到传统的对应关系。由于3D人体骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法明显优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上找到。

This paper addresses the challenge of reconstructing an animatable human model from a multi-view video. Some recent works have proposed to decompose a non-rigidly deforming scene into a canonical neural radiance field and a set of deformation fields that map observation-space points to the canonical space, thereby enabling them to learn the dynamic scene from images. However, they represent the deformation field as translational vector field or SE(3) field, which makes the optimization highly under-constrained. Moreover, these representations cannot be explicitly controlled by input motions. Instead, we introduce a pose-driven deformation field based on the linear blend skinning algorithm, which combines the blend weight field and the 3D human skeleton to produce observation-to-canonical correspondences. Since 3D human skeletons are more observable, they can regularize the learning of the deformation field. Moreover, the pose-driven deformation field can be controlled by input skeletal motions to generate new deformation fields to animate the canonical human model. Experiments show that our approach significantly outperforms recent human modeling methods. The code is available at https://zju3dv.github.io/animatable_nerf/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源