论文标题

宠物图像Denoising的噪声级感知框架

A Noise-level-aware Framework for PET Image Denoising

论文作者

Li, Ye, Cui, Jianan, Chen, Junyu, Zeng, Guodong, Wollenweber, Scott, Jansen, Floris, Jang, Se-In, Kim, Kyungsang, Gong, Kuang, Li, Quanzheng

论文摘要

在PET中,不同人体区域中存在的相对(信号依赖性)噪声的数量可能显着不同,并且与该区域中存在的计数固有相关。在原则上和其他因素中,一个区域的计数数量取决于该地区的总施用活性,扫描仪灵敏度,图像采集持续时间,该地区的放射性药物示踪剂的吸收以及该地区周围的局部身体形态。从理论上讲,与低计数(高相对噪声)图像相比,需要少量的去核操作来降低高计(低相对噪声)图像,反之亦然。当前的基于深度学习的宠物图像denoising方法主要是对图像外观进行的训练,并且对不同噪声水平的图像没有特殊处理。我们的假设是,通过将输入图像的局部相对噪声水平明确提供到深卷积神经网络(DCNN),DCNN可以胜过仅在图像外观上训练的自身。为此,我们提出了一个噪声级感知的框架Denoising框架,该框架允许将局部噪声水平嵌入DCNN中。该提出的训练并在30和15位患者宠物图像上进行了训练和测试,该图像在GE Discovery Mi PET/CT系统上获取。我们的实验表明,在我们的骨干网络中,PSNR和SSIM的增加,相对噪声水平嵌入(NLE)与没有NLE的同一网络在p <0.001上具有统计学意义,而所提出的方法显着超过了强大的基线方法。

In PET, the amount of relative (signal-dependent) noise present in different body regions can be significantly different and is inherently related to the number of counts present in that region. The number of counts in a region depends, in principle and among other factors, on the total administered activity, scanner sensitivity, image acquisition duration, radiopharmaceutical tracer uptake in the region, and patient local body morphometry surrounding the region. In theory, less amount of denoising operations is needed to denoise a high-count (low relative noise) image than images a low-count (high relative noise) image, and vice versa. The current deep-learning-based methods for PET image denoising are predominantly trained on image appearance only and have no special treatment for images of different noise levels. Our hypothesis is that by explicitly providing the local relative noise level of the input image to a deep convolutional neural network (DCNN), the DCNN can outperform itself trained on image appearance only. To this end, we propose a noise-level-aware framework denoising framework that allows embedding of local noise level into a DCNN. The proposed is trained and tested on 30 and 15 patient PET images acquired on a GE Discovery MI PET/CT system. Our experiments showed that the increases in both PSNR and SSIM from our backbone network with relative noise level embedding (NLE) versus the same network without NLE were statistically significant with p<0.001, and the proposed method significantly outperformed a strong baseline method by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源