论文标题
物理学中的可解释的机器学习
Interpretable machine learning in Physics
论文作者
论文摘要
在多元方法中添加可解释性为探索具有高阶相关性的复杂物理系统而创造了一种有力的协同作用,同时在系统的基本动力学中提高了一定程度的清晰度。
Adding interpretability to multivariate methods creates a powerful synergy for exploring complex physical systems with higher order correlations while bringing about a degree of clarity in the underlying dynamics of the system.