论文标题
$ l^p-l^q $通过$ k $ -boad傅立叶限制的波方程的本地平滑估计值
$L^p-L^q$ local smoothing estimates for the wave equation via $k$-broad Fourier restriction
论文作者
论文摘要
We explore the connection between $k$-broad Fourier restriction estimates and sharp regularity $L^p-L^q$ local smoothing estimates for the solutions of the wave equation in $\mathbb{R}^{n}\times \mathbb{R}$ for all $n \geq 3$ via a Bourgain--Guth broad-narrow analysis.一个有趣的功能是,$ e^{i t \ sqrt { - δ}} $的本地平滑估计在Lorentz reccaling下不是不变的。
We explore the connection between $k$-broad Fourier restriction estimates and sharp regularity $L^p-L^q$ local smoothing estimates for the solutions of the wave equation in $\mathbb{R}^{n}\times \mathbb{R}$ for all $n \geq 3$ via a Bourgain--Guth broad-narrow analysis. An interesting feature is that local smoothing estimates for $e^{i t \sqrt{-Δ}}$ are not invariant under Lorentz rescaling.