论文标题

$ l^p-l^q $通过$ k $ -boad傅立叶限制的波方程的本地平滑估计值

$L^p-L^q$ local smoothing estimates for the wave equation via $k$-broad Fourier restriction

论文作者

Beltran, David, Saari, Olli

论文摘要

We explore the connection between $k$-broad Fourier restriction estimates and sharp regularity $L^p-L^q$ local smoothing estimates for the solutions of the wave equation in $\mathbb{R}^{n}\times \mathbb{R}$ for all $n \geq 3$ via a Bourgain--Guth broad-narrow analysis.一个有趣的功能是,$ e^{i t \ sqrt { - δ}} $的本地平滑估计在Lorentz reccaling下不是不变的。

We explore the connection between $k$-broad Fourier restriction estimates and sharp regularity $L^p-L^q$ local smoothing estimates for the solutions of the wave equation in $\mathbb{R}^{n}\times \mathbb{R}$ for all $n \geq 3$ via a Bourgain--Guth broad-narrow analysis. An interesting feature is that local smoothing estimates for $e^{i t \sqrt{-Δ}}$ are not invariant under Lorentz rescaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源