论文标题

Fermat的最后一个定理$ {\ Mathbb Q}(\ sqrt {5})$和$ {\ Mathbb Q}(\ sqrt {17})$

Fermat's Last Theorem over ${\mathbb Q}(\sqrt{5})$ and ${\mathbb Q}(\sqrt{17})$

论文作者

Chen, Imin, Efemwonkieke, Aisosa, Sun, David

论文摘要

我们证明了Fermat在$ {\ Mathbb Q}(\ sqrt {5})$和$ {\ Mathbb Q}(\ sqrt Q}(\ sqrt {17})$的质量指数$ p \ ge 5 $ 5 $中的某些一致性$ 48 $中,由Moduly of Modular Quare quare quare-quartimal quare-ge 5 $,互惠限制。用于治疗$ {\ mathbb q}情况的互惠约束(\ sqrt {5})$是对Chen-Siksek使用的一个真实二次基地的概括。对于$ {\ Mathbb Q}(\ sqrt {17})$,这是不足的,我们使用Hilbert符号从理性字段中概括了Bennett-Chen-dahmen-yazdani的相互约束,以便某些实际的Quadratic字段。

We prove Fermat's Last Theorem over ${\mathbb Q}(\sqrt{5})$ and ${\mathbb Q}(\sqrt{17})$ for prime exponents $p \ge 5$ in certain congruence classes modulo $48$ by using a combination of the modular method and Brauer-Manin obstructions explicitly given by quadratic reciprocity constraints. The reciprocity constraint used to treat the case of ${\mathbb Q}(\sqrt{5})$ is a generalization to a real quadratic base field of the one used by Chen-Siksek. For the case of ${\mathbb Q}(\sqrt{17})$, this is insufficient, and we generalize a reciprocity constraint of Bennett-Chen-Dahmen-Yazdani using Hilbert symbols from the rational field to certain real quadratic fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源