论文标题
部分可观测时空混沌系统的无模型预测
Concentration Properties of Random Codes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper studies the concentration properties of random codes. Specifically, we show that, for discrete memoryless channels, the error exponent of a randomly generated code with pairwise-independent codewords converges in probability to its expectation -- the typical error exponent. For high rates, the result is a consequence of the fact that the random-coding error exponent and the sphere-packing error exponent coincide. For low rates, instead, the convergence is based on the fact that the union bound accurately characterizes the probability of error. The paper also zooms into the behavior at asymptotically low rates and shows that the error exponent converges in distribution to a Gaussian-like distribution. Finally, we present several results on the convergence of the error probability and error exponent for generic ensembles and channels.