论文标题
BI:YIG膜中通过温度诱导各向异性变化和磁声耦合的旋转波动激发
Standing spin wave excitation in Bi:YIG films via temperature induced anisotropy changes and magnetoacoustic coupling
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics following the direct optical excitation of the magnetic insulator Bi:YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magnetoelastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: The magneto-acoustic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that for direct excitation both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin-wave amplitudes of higher order modes indicates that both mechanisms are substantially active.