论文标题
部分可观测时空混沌系统的无模型预测
What is the best RNN-cell structure to forecast each time series behavior?
论文作者
论文摘要
毫无疑问,时间序列预测在许多领域至关重要。使用最常用的机器学习模型来解决时间序列预测任务是经常性神经网络(RNN)。通常,这些模型是使用三个最受欢迎的单元格之一构建的:Elman,长期记忆(LSTM)或门控复发单元(GRU)单元。每个单元具有不同的结构,并意味着不同的计算成本。但是,尚不清楚为什么以及何时使用每个RNN细胞结构。实际上,没有所有可能的时间序列行为的全面表征,也没有关于最适合每种行为的RNN细胞结构的指导。这项研究的目的是双重的:它几乎对所有时间序列的行为呈现了全面的分类法,并提供了对每个时间序列行为的最佳RNN细胞结构的见解。我们进行了两个实验:(1)我们通过基于其基本体系结构的一个变化(去除,添加或替换一个单元格成分)来创建11个变体,评估和分析LSTM-Vanilla细胞中每个组件在LSTM-Vanilla细胞中的作用。 (2)我们评估和分析20种可能的RNN细胞结构的性能。为了评估,比较和选择最佳模型,使用了不同的统计指标:基于错误的指标,基于信息标准的指标,基于天真的指标和基于方向变化的指标。为了进一步提高我们对模型解释和选择的信心,使用了弗里德曼·威尔科克森·霍尔姆(Friedman Wilcoxon-Holm)签名的秩检验。我们的结果主张对新创建的RNN变体(名为Slim)的使用和探索在时间序列中预测,这要归功于其准确预测不同时间序列行为的能力,以及它不需要昂贵的时间和计算资源的简单结构设计。
It is unquestionable that time series forecasting is of paramount importance in many fields. The most used machine learning models to address time series forecasting tasks are Recurrent Neural Networks (RNNs). Typically, those models are built using one of the three most popular cells: ELMAN, Long Short-Term Memory (LSTM), or Gated Recurrent Unit (GRU) cells. Each cell has a different structure and implies a different computational cost. However, it is not clear why and when to use each RNN-cell structure. Actually, there is no comprehensive characterization of all the possible time series behaviors and no guidance on what RNN cell structure is the most suitable for each behavior. The objective of this study is twofold: it presents a comprehensive taxonomy of almost all time series behaviors and provides insights into the best RNN cell structure for each time series behavior. We conducted two experiments: (1) We evaluate and analyze the role of each component in the LSTM-Vanilla cell by creating 11 variants based on one alteration in its basic architecture (removing, adding, or substituting one cell component). (2) We evaluate and analyze the performance of 20 possible RNN-cell structures. To evaluate, compare, and select the best model, different statistical metrics were used: error-based metrics, information criterion-based metrics, naive-based metrics, and direction change-based metrics. To further improve our confidence in the models interpretation and selection, the Friedman Wilcoxon-Holm signed-rank test was used. Our results advocate the usage and exploration of the newly created RNN variant, named SLIM, in time series forecasting thanks to its high ability to accurately predict the different time series behaviors, as well as its simple structural design that does not require expensive temporal and computing resources.