论文标题

Wiener-HOPF分解索引索引在实现方面相对于单位圆的函数

Wiener-Hopf factorization indices of rational matrix functions with respect to the unit circle in terms of realization

论文作者

Groenewald, G. J., Kaashoek, M. A., Ran, A. C. M.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As in the paper [G. Groenewald, M.A. Kaashoek, A.C.M. Ran, Wiener-Hopf indices of unitary functions on the unit circle in terms of realizations and related results on Toeplitz operators. \emph{Indag. Math.} 28 (2017) 694--710] our aim is to obtain explicitly the Wiener-Hopf indices of a rational $m\times m$ matrix function $R(z)$ that has no poles and no zeros on the unit circle $\mathbb{T}$ but, in contrast with that paper, the function $R(z)$ is not required to be unitary on the unit circle. On the other hand, using a Douglas-Shapiro-Shields type of factorization, we show that $R(z)$ factors as $R(z)=Ξ(z)Ψ(z)$, where $Ξ(z)$ and $Ψ(z)$ are rational $m\times m$ matrix functions, $Ξ(z)$ is unitary on the unit circle and $Ψ(z)$ is an invertible outer function. Furthermore, the fact that $Ξ(z)$ is unitary on the unit circle allows us to factor as $Ξ(z) =V(z)W^*(z)$ where $V(z)$ and $W(z)$ are rational bi-inner $m\times m$ matrix functions. The latter allows us to solve the Wiener-Hopf indices problem. To derive explicit formulas for the functions $V(z)$ and $W(z)$ requires additional realization properties of the function $Ξ(z)$ which are given in the last two sections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源