论文标题

Jacobi流程的Wigner-和Marchenko-Pastur型极限

Wigner- and Marchenko-Pastur-type limits for Jacobi processes

论文作者

Auer, Martin, Voit, Michael, Woerner, Jeannette H. C.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study Jacobi processes $(X_{t})_{t\ge0}$ on the compact spaces $[-1,1]^N$ and on the noncompact spaces $[1,\infty[^N$ which are motivated by the Heckman-Opdam theory for the root systems of type BC and associated integrable particle systems. These processes depend on three positive parameters and degenerate in the freezing limit to solutions of deterministic dynamical systems. In the compact case, these models tend for $t\to\infty$ to the distributions of the $β$-Jacobi ensembles and, in the freezing case, to vectors consisting of ordered zeros of one-dimensional Jacobi polynomials. Representing these processes by stochastic differential equations, we derive almost sure analogues of Wigner's semicircle and Marchenko-Pastur limit laws for $N\to\infty$ for the empirical distributions of the $N$ particles on some local scale. We there allow for arbitrary initial conditions, which enter the limiting distributions via free convolutions These results generalize corresponding stationary limit results in the compact case for $β$-Jacobi ensembles and, in the deterministic case, for the empirical distributions of the ordered zeros of Jacobi polynomials by Dette and Studden. The results are also related to free limit theorems for multivariate Bessel processes, $β$-Hermite and $β$-Laguerre ensembles, and the asymptotic empirical distributions of the zeros of Hermite and Laguerre polynomials for $N\to\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源