论文标题

使用合成图像数据培训生成的对抗网络,用于光学特性映射

Training Generative Adversarial Networks for Optical Property Mapping using Synthetic Image Data

论文作者

Osman, Ahmed, Crowley, Jane, Gordon, George

论文摘要

我们展示了使用空间频域成像(SFDI)图像数据集的生成对抗网络(GAN)预测光学特性图(散射和吸收)的训练,该图像数据集与免费开源3D建模和渲染软件合成生成。搅拌器的灵活性被利用以模拟与患病组织的临床SFDI相关的3种模型:平坦样品,具有球体肿瘤的扁平样品和带有球体肿瘤的圆柱样品,代表了肾小管器官内的成像。胃肠道。在所有3种情况下,我们都表明,GAN提供了从单个SFDI图像中的光学性质的准确重建,其平均归一化误差范围为1-1.2%的吸收和0.7-1.2%的散射,从而改善了肿瘤球形结构的视觉对比度。这与实验性SFDI数据上的GAN相比,与25%的吸收误差和10%的散射误差进行了比较。但是,这种改进是由于噪声较低和完美地面真理的可用性所致,因此我们通过对实验数据进行了训练的GAN进行跨验量验证我们的合成训练的GAN,并观察到可吸收的误差<40%,用于散射的误差<40%,这很大程度上是由于空间频率miSm匹配艺术作品的存在很大程度上。因此,我们的合成训练的GAN与实际的实验样本高度相关,但为大型训练数据集,完美的地面真相和测试现实成像几何形状(例如内部的圆柱体,不存在常规的单弹性解调算法。将来,我们希望在混合实际合成数据集中应用诸如域适应或培训之类的技术将创建一个强大的工具,用于快速,准确地从真实的临床成像系统中快速,准确地生产光学特性图。

We demonstrate training of a Generative Adversarial Network (GAN) for prediction of optical property maps (scattering and absorption) using spatial frequency domain imaging (SFDI) image data sets generated synthetically with free open-source 3D modelling and rendering software, Blender. The flexibility of Blender is exploited to simulate 3 models with real-life relevance to clinical SFDI of diseased tissue: flat samples, flat samples with spheroidal tumours and cylindrical samples with spheroidal tumours representing imaging inside a tubular organ e.g. the gastro-intestinal tract. In all 3 scenarios we show the GAN provides accurate reconstruction of optical properties from single SFDI images with mean normalised error ranging from 1-1.2% for absorption and 0.7-1.2% for scattering, resulting in visually improved contrast for tumour spheroid structures. This compares favourably with 25% absorption error and 10% scattering error achieved using GANs on experimental SFDI data. However, some of this improvement is due to lower noise and availability of perfect ground truths so we therefore cross-validate our synthetically-trained GAN with a GAN trained on experimental data and observe visually accurate results with error of <40% for absorption and <25% for scattering, due largely to the presence of spatial frequency mismatch artefacts. Our synthetically trained GAN is therefore highly relevant to real experimental samples, but provides significant added benefits of large training datasets, perfect ground-truths and the ability to test realistic imaging geometries, e.g. inside cylinders, for which no conventional single-shot demodulation algorithms exist. In future we expect that application of techniques such as domain adaptation or training on hybrid real-synthetic datasets will create a powerful tool for fast, accurate production of optical property maps from real clinical imaging systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源