论文标题
一维随机量子电路中嘈杂的纠缠过渡
Noisy induced entanglement transition in one-dimensional random quantum circuits
论文作者
论文摘要
随机量子电路是一个最小结构化的模型,用于研究多体量子系统的纠缠动力学。在本文中,我们考虑了使用密度矩阵算子和张量收缩方法的一维量子电路,其嘈杂的HAAR随机统一门。结果表明,随机量子电路的纠缠演变正确地以对数纠缠负性为特征。通过执行精确的数值计算,我们发现,随着物理错误率降低到临界值$ p_c \ of 0.056 $以下,对数纠缠否定性从区域定律变为量法,从而导致纠缠过渡。相关长度的关键指数可以从有限尺寸的缩放分析确定,从而揭示了嘈杂的中间尺度量子设备的通用动态特性。
Random quantum circuit is a minimally structured model to study the entanglement dynamics of many-body quantum systems. In this paper, we considered a one-dimensional quantum circuit with noisy Haar-random unitary gates using density matrix operator and tensor contraction methods. It is shown that the entanglement evolution of the random quantum circuits is properly characterized by the logarithmic entanglement negativity. By performing exact numerical calculations, we found that, as the physical error rate is decreased below a critical value $p_c\approx 0.056$, the logarithmic entanglement negativity changes from the area law to the volume law, giving rise to an entanglement transition. The critical exponent of the correlation length can be determined from the finite-size scaling analysis, revealing the universal dynamic property of the noisy intermediate-scale quantum devices.