论文标题

实时神经-MPC:深度学习模型的四型和敏捷机器人平台的预测性控制

Real-time Neural-MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms

论文作者

Salzmann, Tim, Kaufmann, Elia, Arrizabalaga, Jon, Pavone, Marco, Scaramuzza, Davide, Ryll, Markus

论文摘要

模型预测控制(MPC)已成为高性能自治系统嵌入式控制的流行框架。但是,为了使用MPC实现良好的控制性能,准确的动态模型是关键。为了维持实时操作,嵌入式系统上使用的动力学模型仅限于简单的第一原则模型,这实质上限制了其代表性。与此类简单模型相反,机器学习方法,特别是神经网络,已被证明可以准确地对复杂的动态效果进行建模,但是它们的较大的计算复杂性阻碍了与快速的实时迭代循环的组合。通过这项工作,我们提出了实时神经MPC,这是一个框架,将大型,复杂的神经网络体系结构作为动力学模型在模型预测性控制管道中。我们的实验是在模拟和现实世界上进行的实验,这是一个高度敏捷的四极管平台,展示了所描述的系统的功能,可以使用基于梯度的在线优化MPC运行以前不可行的大型建模能力。与在线优化MPC中神经网络的先前实现相比,我们可以利用嵌入式平台上50Hz实时窗口中的4000倍的型号。此外,与没有神经网络动态的最新MPC方法相比,我们通过将位置跟踪误差降低多达82%,从而显示了对现实世界问题的可行性。

Model Predictive Control (MPC) has become a popular framework in embedded control for high-performance autonomous systems. However, to achieve good control performance using MPC, an accurate dynamics model is key. To maintain real-time operation, the dynamics models used on embedded systems have been limited to simple first-principle models, which substantially limits their representative power. In contrast to such simple models, machine learning approaches, specifically neural networks, have been shown to accurately model even complex dynamic effects, but their large computational complexity hindered combination with fast real-time iteration loops. With this work, we present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline. Our experiments, performed in simulation and the real world onboard a highly agile quadrotor platform, demonstrate the capabilities of the described system to run learned models with, previously infeasible, large modeling capacity using gradient-based online optimization MPC. Compared to prior implementations of neural networks in online optimization MPC we can leverage models of over 4000 times larger parametric capacity in a 50Hz real-time window on an embedded platform. Further, we show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源