论文标题

从新的动态假设中描述的流体动力学

Fluid dynamics described from new dynamic hypothesis

论文作者

Shi, Peng

论文摘要

为了解决经典流体运动学在描述Navier-Stokes方程中粘性力与涡度之间线性相关性的悖论方面的悖论,该研究研究了动量保护与能量保护与红色之间的固有关系,并从新的动态流动中进行流体流动的基本方程。该研究表明,动量保护和机械能量保护是在不同描述中称为相同的概念。速度的物质导数是在欧拉(Eulerian)的角度描绘流体颗粒的加速度。在研究中,假定流体仅遵守动量定理,该定理描述了流体的翻译运动。流体元素的质心可以在卷曲力场下进行翻译运动。在假设中,应力张量的对称性取决于应力场的特性,而不是为流体元件的动量矩保持。当应力场是一个自由场时,应力张量是对称的,当应力场是卷曲场时,应力张量是不对称的。在假设下提出了用于流体的新动态平衡方程和牛顿流体的本构关系。获得Navier-Stokes方程。流体动力学的新模型不需要Stokes假设。涡度可以反映流场中剪切流的幅度分布。

In order to address the difficulties of classical fluid kinematics in describing vorticity and the paradox of linear correlation between viscous force and vorticity in the Navier-Stokes equations, the study examines the inherent relationship between momentum conservation and energy conservation and rederives the fundamental equations of fluid flow from new dynamic hypothesis. The study reveals that momentum conservation and mechanical energy conservation are the same concept termed in different descriptions. The material derivative of velocity is to depict the acceleration of fluid particles in Eulerian perspective. In the study, it is assumed that fluids only obey the theorem of momentum, which describes the translational motion of fluids. The centroid of fluid elements can undergo translational motion under a curl force field. In the hypothesis, the symmetry of stress tensor is determined by the properties of stress field rather than the conservation of moment of momentum for fluid elements. The stress tensor is symmetric when stress field is a curl free field, and the stress tensor is asymmetric when stress field is a curl field. New dynamic equilibrium equations for fluids and the constitutive relationship for Newtonian fluid are proposed under the hypothesis. The Navier-Stokes equations are obtained. The new model of fluid dynamics does not require Stokes hypothesis. It is obtained that vorticity reflects the magnitude distribution of shear flow in flow field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源