论文标题
一个统治所有这些的代理:迈向多代理对话ai
One Agent To Rule Them All: Towards Multi-agent Conversational AI
论文作者
论文摘要
市场上的市售对话代理(CA)的数量不断增加,导致用户承受着学习和采用多个代理来完成其任务的负担。尽管先前的工作已经探索了单个代理设计中支持多种域,但由于所需功能的较大动作空间,交互体验遭受了损失。为了解决这些问题,我们引入了一个新的任务BBAI:黑框代理集成,重点是在大规模上结合多个黑盒CAS的功能。我们探讨了两种技术:问题代理配对和旨在解决此任务的问题响应配对。利用这些技术,我们为所有(OFA)设计一个,这是一个可扩展的系统,它提供了与多个CAS相互作用的统一接口。此外,我们介绍了MARS:多代理响应选择,这是一个针对问题响应配对的新编码器模型,该模型共同编码用户问题和代理响应对。我们证明,OFA能够自动,准确地集成了一组市售的CAS跨越不同的域。具体来说,使用火星编码器,我们在BBAI任务上实现了最高的精度,表现优于强基础。
The increasing volume of commercially available conversational agents (CAs) on the market has resulted in users being burdened with learning and adopting multiple agents to accomplish their tasks. Though prior work has explored supporting a multitude of domains within the design of a single agent, the interaction experience suffers due to the large action space of desired capabilities. To address these problems, we introduce a new task BBAI: Black-Box Agent Integration, focusing on combining the capabilities of multiple black-box CAs at scale. We explore two techniques: question agent pairing and question response pairing aimed at resolving this task. Leveraging these techniques, we design One For All (OFA), a scalable system that provides a unified interface to interact with multiple CAs. Additionally, we introduce MARS: Multi-Agent Response Selection, a new encoder model for question response pairing that jointly encodes user question and agent response pairs. We demonstrate that OFA is able to automatically and accurately integrate an ensemble of commercially available CAs spanning disparate domains. Specifically, using the MARS encoder we achieve the highest accuracy on our BBAI task, outperforming strong baselines.