论文标题

无缝将事实信息和社会内容与有说服力的对话整合在一起

Seamlessly Integrating Factual Information and Social Content with Persuasive Dialogue

论文作者

Chen, Maximillian, Shi, Weiyan, Yan, Feifan, Hou, Ryan, Zhang, Jingwen, Sahay, Saurav, Yu, Zhou

论文摘要

诸如说服力之类的复杂对话设置涉及交流态度或行为的变化,因此,即使与主题没有直接相关,用户的观点也需要解决。在这项工作中,我们贡献了一个新颖的模块化对话系统框架,该框架将事实信息和社会内容无缝整合到有说服力的对话中。我们的框架可以推广到混合社交和任务内容的任何对话任务。我们进行了一项研究,将用户对框架的评估与基线端到端生成模型进行了比较。我们发现,与没有明确处理社会内容或事实问题的端到端模型相比,我们的框架在包括能力和友善在内的所有维度上都得到了更优惠的评估。

Complex conversation settings such as persuasion involve communicating changes in attitude or behavior, so users' perspectives need to be addressed, even when not directly related to the topic. In this work, we contribute a novel modular dialogue system framework that seamlessly integrates factual information and social content into persuasive dialogue. Our framework is generalizable to any dialogue tasks that have mixed social and task contents. We conducted a study that compared user evaluations of our framework versus a baseline end-to-end generation model. We found our framework was evaluated more favorably in all dimensions including competence and friendliness, compared to the end-to-end model which does not explicitly handle social content or factual questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源