论文标题
部分可观测时空混沌系统的无模型预测
Simplicial Attention Neural Networks
论文作者
论文摘要
这项工作的目的是引入简单的注意网络(SANS),即基于利用掩盖自动识别层的简单复合物的数据运行的新型神经体系结构。促进拓扑信号处理的正式论证,我们引入了一种适当的自我发起机制,能够在不同层(例如节点,边缘,三角形等)上处理数据组件,同时学习如何在完全面向任务的方向上进行给定拓扑领域的上下社区。所提出的没有概括的大多数当前架构可用于处理简单复合物定义的数据。当应用于不同(电感和转导的)任务(例如轨迹预测和引文复合物中缺少数据指示)时,提出的方法与其他方法进行了比较。
The aim of this work is to introduce simplicial attention networks (SANs), i.e., novel neural architectures that operate on data defined on simplicial complexes leveraging masked self-attentional layers. Hinging on formal arguments from topological signal processing, we introduce a proper self-attention mechanism able to process data components at different layers (e.g., nodes, edges, triangles, and so on), while learning how to weight both upper and lower neighborhoods of the given topological domain in a totally task-oriented fashion. The proposed SANs generalize most of the current architectures available for processing data defined on simplicial complexes. The proposed approach compares favorably with other methods when applied to different (inductive and transductive) tasks such as trajectory prediction and missing data imputations in citation complexes.