论文标题
$ \ MATHCAL {H} _ {\ infty} $ - 不确定非线性动力学系统的最佳间隔观察者通过混合 - 单调分解
$\mathcal{H}_{\infty}$-optimal Interval Observer Synthesis for Uncertain Nonlinear Dynamical Systems via Mixed-Monotone Decompositions
论文作者
论文摘要
本文介绍了一种新颖的$ \ MATHCAL {H} _ {\ infty} $ - 最佳的间隔观察者综合/不确定的本地Lipschitz非线性连续时间(CT)和离散时间(DT)系统具有嘈杂的非线性观察。具体而言,使用混合单酮分解,提出的观察者是正确的,即构造,即间隔估计很容易在没有其他约束或程序的情况下构架真实状态。此外,我们为提出的观察者的输入到状态(ISS)稳定性提供了足够的条件,并以$ \ Mathcal {h} _ {\ infty} $以半差异程序(SDP)形式使用framer错误系统获得的增益,并使用线性构成等值(LMIS)的固定等值(LMIS)约束。最后,我们将提出的$ \ MATHCAL {H} _ {\ infty} $ - 最佳间隔观察者与某些基准CT和DT间隔观察者的性能进行比较。
This paper introduces a novel $\mathcal{H}_{\infty}$-optimal interval observer synthesis for bounded-error/uncertain locally Lipschitz nonlinear continuous-time (CT) and discrete-time (DT) systems with noisy nonlinear observations. Specifically, using mixed-monotone decompositions, the proposed observer is correct by construction, i.e., the interval estimates readily frame the true states without additional constraints or procedures. In addition, we provide sufficient conditions for input-to-state (ISS) stability of the proposed observer and for minimizing the $\mathcal{H}_{\infty}$ gain of the framer error system in the form of semi-definite programs (SDPs) with Linear Matrix Inequalities (LMIs) constraints. Finally, we compare the performance of the proposed $\mathcal{H}_{\infty}$-optimal interval observers with some benchmark CT and DT interval observers.