论文标题

Shapenet:星系图像反卷积的形状约束

ShapeNet: Shape Constraint for Galaxy Image Deconvolution

论文作者

Nammour, F., Akhaury, U., Girard, J. N., Lanusse, F., Sureau, F., Ali, C. Ben, Starck, J. -L.

论文摘要

深度学习(DL)在解决各个领域的反问题方面表现出了显着的结果。特别是,Tikhonet方法对解析光学天文图像非常有力(Sureau等,2020)。但是,此方法仅使用$ \ ell_2 $损失,该损失不能保证图像中重建对象的物理信息(例如磁通和形状)。在Nammour等。 (2021),在稀疏反卷积的框架中提出了一种新的损失函数,该框架更好地保留了星系的形状并减少了像素误差。在本文中,我们扩展了Tikhonet,以考虑这种形状约束,并将我们的新DL方法(称为Shapenet)应用于光学和射击式计量学模拟数据集。本文的独创性依赖于i)我们在神经网络框架中使用的形状约束,ii)第一次将深度学习应用于无线电界限图像反向卷积,以及iii)生成了我们为社区提供的模拟无线电数据集。一系列示例说明了结果。

Deep Learning (DL) has shown remarkable results in solving inverse problems in various domains. In particular, the Tikhonet approach is very powerful to deconvolve optical astronomical images (Sureau et al. 2020). Yet, this approach only uses the $\ell_2$ loss, which does not guarantee the preservation of physical information (e.g. flux and shape) of the object reconstructed in the image. In Nammour et al. (2021), a new loss function was proposed in the framework of sparse deconvolution, which better preserves the shape of galaxies and reduces the pixel error. In this paper, we extend Tikhonet to take into account this shape constraint, and apply our new DL method, called ShapeNet, to optical and radio-interferometry simulated data set. The originality of the paper relies on i) the shape constraint we use in the neural network framework, ii) the application of deep learning to radio-interferometry image deconvolution for the first time, and iii) the generation of a simulated radio data set that we make available for the community. A range of examples illustrates the results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源