论文标题

有什么区别?卷积神经网络进行瞬时检测的潜力,而无需模板减法

What's the Difference? The potential for Convolutional Neural Networks for transient detection without template subtraction

论文作者

Acero-Cuellar, Tatiana, Bianco, Federica, Dobler, Gregory, Sako, Masao, Qu, Helen, Collaboration, The LSST Dark Energy Science

论文摘要

我们介绍了卷积神经网络(CNN)的潜在研究,使天体物理瞬变与图像伪像,这项被称为“真实的 - 博格斯”分类的任务,而不需要减去模板(或差异)图像,这需要计算昂贵的过程才能产生生成,涉及大型伏击量的小空间尺度上的图像匹配图像。使用黑暗能源调查中的数据,我们探讨了CNN的使用来(1)自动化“真实的 - 模仿”分类,(2)降低了瞬态发现的计算成本。我们比较了两个具有相似体系结构的CNN的效率,一个CNN使用“图像三重态”(模板,搜索和差异图像),另一个使用一个仅作为输入模板并仅搜索的效率。我们测量与输入发现中的信息丢失相关的效率下降,即测试准确性从96%降低到91.1%。我们进一步研究了后一个模型如何从模板中学习所需信息,并通过探索显着图来搜索。我们的工作(1)证实,CNN是“真实模仿”分类的绝佳模型,仅依赖成像数据,不需要功能工程任务; (2)证明可以构建高临界性(> 90%)模型而无需构造差异图像,但丢失了一些精度。一旦经过培训,神经网络就可以以最低的计算成本产生预测,我们认为,这种方法的未来实施可以大大降低鲁宾天文台(Rubin Obtervatory)在瞬时调查中检测瞬态的计算成本,例如鲁宾天文台对空间和时间的遗产调查,通过完全绕开差异图像分析。

We present a study of the potential for Convolutional Neural Networks (CNNs) to enable separation of astrophysical transients from image artifacts, a task known as "real-bogus" classification without requiring a template subtracted (or difference) image which requires a computationally expensive process to generate, involving image matching on small spatial scales in large volumes of data. Using data from the Dark Energy Survey, we explore the use of CNNs to (1) automate the "real-bogus" classification, (2) reduce the computational costs of transient discovery. We compare the efficiency of two CNNs with similar architectures, one that uses "image triplets" (templates, search, and difference image) and one that takes as input the template and search only. We measure the decrease in efficiency associated with the loss of information in input finding that the testing accuracy is reduced from 96% to 91.1%. We further investigate how the latter model learns the required information from the template and search by exploring the saliency maps. Our work (1) confirms that CNNs are excellent models for "real-bogus" classification that rely exclusively on the imaging data and require no feature engineering task; (2) demonstrates that high-accuracy (> 90%) models can be built without the need to construct difference images, but some accuracy is lost. Since once trained, neural networks can generate predictions at minimal computational costs, we argue that future implementations of this methodology could dramatically reduce the computational costs in the detection of transients in synoptic surveys like Rubin Observatory's Legacy Survey of Space and Time by bypassing the Difference Image Analysis entirely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源