论文标题

双极高温超导性

Bipolaronic high-temperature superconductivity

论文作者

Zhang, C., Sous, J., Reichman, D. R., Berciu, M., Millis, A. J., Prokof'ev, N. V., Svistunov, B. V.

论文摘要

电子晶格相互作用在量子材料中起着重要的作用,从而更深入地了解与声子介导的高过渡 - 温度($ t _ {\ mathrm {c}} $)超导率的直接路线。然而,数十年来,弱电子偶联会导致$ t _ {\ mathrm {c}} $的低值,而强的电子 - phonon耦合会导致晶格不稳定性或双极性的形成,通常被认为是对超导电性的不利影响。因此,从声子介导的机制到高$ t _ {\ mathrm {c}} $材料的途径似乎像在硫化氢中一样限于提高声子频率。在这里,我们提供了一个简单的模型,用于基于光双极的超流量,用于调子介导的高$ t _ {\ mathrm {c}} $超导性。与经过广泛研究的荷斯坦模型相比,晶格扭曲调节电子的势能,我们研究了晶格扭曲调节电子跳跃的情况。这种物理学产生了小型但轻的双极,我们使用精确的无标志量子蒙特卡洛方法进行了研究,展示了通向声子介导的高$ T_ \ Mathrm {C} $超导的新途径。我们发现,基于Migdal-Eliashberg理论或Holstein Bipolarons的超级流体,我们的模型中$ T_ \ MATHRM {C} $显着超过了典型的上限。这种双极机制中产生高$ t_ \ mathrm {c} $的关键成分是轻质质量和小尺寸的双极质量的组合。我们的工作确立了设计高$ t _ {\ mathrm {c}} $超导体通过功能材料工程设计的原则。

Electron-lattice interactions play a prominent role in quantum materials, making a deeper understanding of direct routes to phonon-mediated high-transition-temperature ($T_{\mathrm{c}}$) superconductivity desirable. However, it has been known for decades that weak electron-phonon coupling gives rise to low values of $T_{\mathrm{c}}$, while strong electron-phonon coupling leads to lattice instability or formation of bipolarons, generally assumed to be detrimental to superconductivity. Thus, the route to high-$T_{\mathrm{c}}$ materials from phonon-mediated mechanisms has heretofore appeared to be limited to raising the phonon frequency as in the hydrogen sulfides. Here we present a simple model for phonon-mediated high-$T_{\mathrm{c}}$ superconductivity based on superfluidity of light bipolarons. In contrast to the widely studied Holstein model where lattice distortions modulate the electron's potential energy, we investigate the situation where lattice distortions modulate the electron hopping. This physics gives rise to small-size, yet light bipolarons, which we study using an exact sign-problem-free quantum Monte Carlo approach, demonstrating a new route to phonon-mediated high-$T_\mathrm{c}$ superconductivity. We find that $T_\mathrm{c}$ in our model generically and significantly exceeds typical upper bounds based on Migdal-Eliashberg theory or superfluidity of Holstein bipolarons. The key ingredient in this bipolaronic mechanism that gives rise to high $T_\mathrm{c}$ is the combination of light mass and small size of bipolarons. Our work establishes principles towards the design of high-$T_{\mathrm{c}}$ superconductors via functional material engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源