论文标题

联合骑行(FEDCY):半监督外科阶段的联合学习

Federated Cycling (FedCy): Semi-supervised Federated Learning of Surgical Phases

论文作者

Kassem, Hasan, Alapatt, Deepak, Mascagni, Pietro, Consortium, AI4SafeChole, Karargyris, Alexandros, Padoy, Nicolas

论文摘要

深度学习方法的最新进步使计算机辅助措施更加接近实现更安全的手术程序的承诺。但是,这种方法的普遍性通常取决于对多个医疗机构的不同数据集进行培训,这是考虑到医疗数据的敏感性的限制性要求。最近提出的协作学习方法(例如联合学习(FL))允许在远程数据集上进行培训,而无需明确共享数据。即便如此,数据注释仍然代表着一种瓶颈,尤其是在医学和手术中经常需要临床专业知识。考虑到这些限制,我们提出了FedCy,这是一种联合的半监督学习(FSSL)方法,它结合了FL和自我监督的学习,以利用标签和未标记视频的分散数据集,从而改善了手术期识别任务的性能。通过利用标记数据中的时间模式,FEDCY帮助指导无标记数据的无监督培训,以学习特定于任务特定的相位识别功能。我们使用新收集的腹腔镜胆囊切除术视频的多机构数据集对最先进的FSSL方法进行了最先进的FSSL方法的表现。此外,我们证明我们的方法在对看不见的域数据进行测试时还可以学习更具普遍的功能。

Recent advancements in deep learning methods bring computer-assistance a step closer to fulfilling promises of safer surgical procedures. However, the generalizability of such methods is often dependent on training on diverse datasets from multiple medical institutions, which is a restrictive requirement considering the sensitive nature of medical data. Recently proposed collaborative learning methods such as Federated Learning (FL) allow for training on remote datasets without the need to explicitly share data. Even so, data annotation still represents a bottleneck, particularly in medicine and surgery where clinical expertise is often required. With these constraints in mind, we propose FedCy, a federated semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos, thereby improving performance on the task of surgical phase recognition. By leveraging temporal patterns in the labeled data, FedCy helps guide unsupervised training on unlabeled data towards learning task-specific features for phase recognition. We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases using a newly collected multi-institutional dataset of laparoscopic cholecystectomy videos. Furthermore, we demonstrate that our approach also learns more generalizable features when tested on data from an unseen domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源