论文标题
GCFSR:一种无面部和gan先验的生成且可控制的面部超级分辨方法
GCFSR: a Generative and Controllable Face Super Resolution Method Without Facial and GAN Priors
论文作者
论文摘要
面部图像超级分辨率(面部幻觉)通常依靠面部先验来恢复现实的细节并保留身份信息。最近的进步可以在Gan Prior的帮助下取得令人印象深刻的结果。他们要么设计复杂的模块来修改固定的GAN先验,要么采用复杂的培训策略来迎合发电机。在这项工作中,我们提出了一个称为GCFSR的生成且可控制的面部SR框架,该框架可以使用忠实的身份信息重建图像,而无需任何其他先验。通常,GCFSR具有编码器生成器架构。为多因素SR任务设计了两个称为样式调制和特征调制的模块。该样式调制旨在生成逼真的面部细节,并且该功能调制动态融合了多级编码功能,并以高尺度因素为条件。简单而优雅的建筑可以以端到端的方式从头开始训练。对于小型升级因子(<= 8),GCFSR只能在对抗性损失的情况下产生令人惊讶的良好结果。在添加L1和感知损失后,GCFSR可以胜过大型升级因子的最先进方法(16、32、64)。在测试阶段,我们可以通过特征调制来调节生成强度,通过不断更改条件升级因子以实现各种生成效应。
Face image super resolution (face hallucination) usually relies on facial priors to restore realistic details and preserve identity information. Recent advances can achieve impressive results with the help of GAN prior. They either design complicated modules to modify the fixed GAN prior or adopt complex training strategies to finetune the generator. In this work, we propose a generative and controllable face SR framework, called GCFSR, which can reconstruct images with faithful identity information without any additional priors. Generally, GCFSR has an encoder-generator architecture. Two modules called style modulation and feature modulation are designed for the multi-factor SR task. The style modulation aims to generate realistic face details and the feature modulation dynamically fuses the multi-level encoded features and the generated ones conditioned on the upscaling factor. The simple and elegant architecture can be trained from scratch in an end-to-end manner. For small upscaling factors (<=8), GCFSR can produce surprisingly good results with only adversarial loss. After adding L1 and perceptual losses, GCFSR can outperform state-of-the-art methods for large upscaling factors (16, 32, 64). During the test phase, we can modulate the generative strength via feature modulation by changing the conditional upscaling factor continuously to achieve various generative effects.