论文标题
通过最佳控制和增强学习优化低雷诺数捕食
Optimising low-Reynolds-number predation via optimal control and reinforcement learning
论文作者
论文摘要
我们寻求有限大小的游泳捕食者的最佳中风序列,该捕食者在低雷诺数下追逐非运动点或有限尺寸的猎物。我们使用最佳控制来为前者寻求全球最佳的解决方案,并为一般情况寻求RL。捕食者由蠕动的模型表示,该模型可以向前转,并侧向旋转并产生压力流。我们确定捕食者的最佳蠕动序列,以实现时间优化(TO)和效率 - 最佳(EO)捕食。在某个点猎物中,执行翻译动作的蠕动者有利于两个L形轨迹,使其能够利用干扰流量来加速捕食。使用应力模式可以显着加快EO捕食的速度,从而使捕食者能够更快地捕获猎物,但能够降低能耗和较高的掠食效率;捕食者可以利用其压力干扰的流动,使猎物朝向自身。与翻译捕食者相比,其组合翻译和旋转的组合时间较小 - 有效,后者偶尔会通过撤退以进步来实现捕食。我们还采用RL来重现追逐点猎物的全球最佳掠夺性策略,定性地捕获了至关重要的两倍 - 归因于路径。使用数值模拟的RL环境,我们探讨了最佳掠食性路径对猎物大小的依赖性。我们的结果可能会提供有用的信息,以帮助设计合成的微武器,例如\ textit {in Vivo}医学微型机器人,能够捕获和接近粘性流中的对象。
We seek the best stroke sequences of a finite-size swimming predator chasing a non-motile point or finite--size prey at low Reynolds number. We use optimal control to seek the globally-optimal solutions for the former and RL for general situations. The predator is represented by a squirmer model that can translate forward and laterally, rotate and generate a stresslet flow. We identify the predator's best squirming sequences to achieve the time-optimal (TO) and efficiency-optimal (EO) predation. For a point prey, the TO squirmer executing translational motions favours a two-fold L-shaped trajectory that enables it to exploit the disturbance flow for accelerated predation; using a stresslet mode significantly expedites the EO predation, allowing the predator to catch the prey faster yet with lower energy consumption and higher predatory efficiency; the predator can harness its stresslet disturbance flow to suck the prey towards itself; compared to a translating predator, its compeer combining translation and rotation is less time--efficient, and the latter occasionally achieves the TO predation via retreating in order to advance. We also adopt RL to reproduce the globally-optimal predatory strategy of chasing a point prey, qualitatively capturing the crucial two--fold attribute of TO path. Using a numerically emulated RL environment, we explore the dependence of the optimal predatory path on the size of prey. Our results might provide useful information that help design synthetic microswimmers such as \textit{in vivo} medical micro-robots capable of capturing and approaching objects in viscous flows.