论文标题

一般和广泛形式游戏中的最佳相关平衡:固定参数算法,硬度和两侧柱产生

Optimal Correlated Equilibria in General-Sum Extensive-Form Games: Fixed-Parameter Algorithms, Hardness, and Two-Sided Column-Generation

论文作者

Zhang, Brian, Farina, Gabriele, Celli, Andrea, Sandholm, Tuomas

论文摘要

我们研究了在广泛形式的游戏中找到最佳相关平衡的问题:正常形式的粗糙相关平衡(NFCCE),广泛的形式的粗相关平衡(EFCCE)和广泛的形式相关平衡(EFCE)。我们做出了两个主要贡献。首先,我们引入了一种用于计算所有三个概念中最佳平衡的新算法。它的运行时仅取决于与游戏信息结构相关的参数。我们还证明了一个基本的复杂性差距:尽管NFCCE的规模范围与Zhang等人的团队游戏中所获得的相似,但这是在标准复杂性假设下其他两个概念的实现。其次,当先前算法的运行时或内存使用情况时,我们提出了一种双向列生成方法。我们的算法在Farina等人的单方面方法上有所改善。通过新的相关策略分解,该策略使玩家可以在相关计划中重新升级其序列形式策略,这些策略以前已添加到支持中。实验表明,我们的技术在计算最佳的通用和均衡平衡方面优于先前的最新状态。

We study the problem of finding optimal correlated equilibria of various sorts in extensive-form games: normal-form coarse correlated equilibrium (NFCCE), extensive-form coarse correlated equilibrium (EFCCE), and extensive-form correlated equilibrium (EFCE). We make two primary contributions. First, we introduce a new algorithm for computing optimal equilibria in all three notions. Its runtime depends exponentially only on a parameter related to the information structure of the game. We also prove a fundamental complexity gap: while our size bounds for NFCCE are similar to those achieved in the case of team games by Zhang et al., this is impossible to achieve for the other two concepts under standard complexity assumptions. Second, we propose a two-sided column generation approach for use when the runtime or memory usage of the previous algorithm is prohibitive. Our algorithm improves upon the one-sided approach of Farina et al. by means of a new decomposition of correlated strategies which allows players to re-optimize their sequence-form strategies with respect to correlation plans which were previously added to the support. Experiments show that our techniques outperform the prior state of the art for computing optimal general-sum correlated equilibria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源