论文标题
在交换环上的张量产物的张量产品的共同体支持
Cohomological supports of tensor products of modules over commutative rings
论文作者
论文摘要
这项工作涉及与交换本地戒指的模块的共同体支持品种。主要的结果是,在Koszul复合物上,一对差异模块的衍生张量产物的支撑是模块支撑的连接。这概括了DAO的结果,并给出了另一个证明DAO和第三作者在完整的相交环上处理独立的模块的结果。 Koszul复合物的结果具有更广泛的适用性,包括对局部环的外部代数。
This works concerns cohomological support varieties of modules over commutative local rings. The main result is that the support of a derived tensor product of a pair of differential graded modules over a Koszul complex is the join of the supports of the modules. This generalizes, and gives another proof of, a result of Dao and the third author dealing with Tor-independent modules over complete intersection rings. The result for Koszul complexes has a broader applicability, including to exterior algebras over local rings.