论文标题

卡罗尔:边缘联合会的信心意识 - 意识到的弹性模型

CAROL: Confidence-Aware Resilience Model for Edge Federations

论文作者

Tuli, Shreshth, Casale, Giuliano, Jennings, Nicholas R.

论文摘要

近年来,大规模物联网(IoT)应用程序的部署已引起了边缘联合会,这些联合会无缝地互连并利用来自多个边缘服务提供商的资源。支持对延迟敏感和计算密集型物联网任务的要求需要服务的弹性,尤其是对于典型的经纪人工作人员部署设计中的经纪人节点。现有的容忍度或弹性方案通常缺乏非平稳工作量设置的鲁棒性和概括能力。这通常是由于在动态场景中适应它们所需的模型所需的昂贵的周期性微调。为了解决这个问题,我们提出了一种信心意识到的弹性模型Carol,该模型利用记忆有效的生成神经网络来预测未来状态的服务质量(QOS),并为每个预测提供置信度评分。因此,每当经纪人失败时,我们都会通过对经纪人 - 工人拓扑空间进行本地搜索并优化未来的QoS来迅速恢复系统。置信度得分使我们能够跟踪预测性能并进行简约的神经网络微调以避免过多的开销,从而进一步改善系统的QoS。与IoT基准应用的基于Raspberry-Pi的边缘测试床上的实验表明,Carol通过降低能耗,违反截止日期的率和弹性高度的高度最高16%,17%和36%来优于最先进的弹性方案。

In recent years, the deployment of large-scale Internet of Things (IoT) applications has given rise to edge federations that seamlessly interconnect and leverage resources from multiple edge service providers. The requirement of supporting both latency-sensitive and compute-intensive IoT tasks necessitates service resilience, especially for the broker nodes in typical broker-worker deployment designs. Existing fault-tolerance or resilience schemes often lack robustness and generalization capability in non-stationary workload settings. This is typically due to the expensive periodic fine-tuning of models required to adapt them in dynamic scenarios. To address this, we present a confidence aware resilience model, CAROL, that utilizes a memory-efficient generative neural network to predict the Quality of Service (QoS) for a future state and a confidence score for each prediction. Thus, whenever a broker fails, we quickly recover the system by executing a local-search over the broker-worker topology space and optimize future QoS. The confidence score enables us to keep track of the prediction performance and run parsimonious neural network fine-tuning to avoid excessive overheads, further improving the QoS of the system. Experiments on a Raspberry-Pi based edge testbed with IoT benchmark applications show that CAROL outperforms state-of-the-art resilience schemes by reducing the energy consumption, deadline violation rates and resilience overheads by up to 16, 17 and 36 percent, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源