论文标题
纳米多孔材料中甲烷和二氧化碳的量子物理学
Quantum Physisorption of Methane and Carbon Dioxide within Nanoporous Materials
论文作者
论文摘要
尽管大量研究揭示了多孔材料的气体物理吸收特征,并且还建立了多种理论来描述过去一个世纪的气体物理吸附,但纳米级空间内气体的物理学行为的本质仍然不明显。我们发现,纳米多孔材料中甲烷和二氧化碳的复杂分子系统的物理行为表现出量子作用。基于这种量子效应,我们从量子力学的角度建立了一个物理吸附方程,以重新理解纳米孔内气体物理学的基本原理。能级过渡会触发气体物理吸收,并在纳米孔内能量量化分子的非均匀空间分布主导气体物理学行为。气体分子的空间分布可以通过温度,压力和势能场来调节。该结果有助于理解和预测纳米多孔材料中CH4和CO2的物理学行为。
Although numerous investigations reveal the gas physisorption characteristics of porous materials and a variety of theories have also established to describe gas physisorption during the past century, the essence of physisorption behavior of gas within nanoscale space is still indistinct. We find that the physisorption behavior of complex molecular system of methane and carbon dioxide within nanoporous materials exhibits a quantum effect. Based on this quantum effect, we established a physisorption equation from the perspective of quantum mechanics to re-understand the basic principles of gas physisorption within nanopores. Energy level transition triggers gas physisorption, and non-uniform spatial distribution of energy-quantized molecules within nanopores dominates the gas physisorption behavior. The spatial distribution of gas molecules can be adjusted by temperature, pressure and potential energy field. This result contributes to understand and predict the physisorption behavior of CH4 and CO2 within nanoporous materials.