论文标题

运动学保护法(KCL)的评论文章

System of kinematical conservation laws (KCL) a review article

论文作者

Arun, K. R., Prasad, Phoolan

论文摘要

在广泛的物理现象中,我们发现需要数学处理的传播表面ωt。在本文中,我们回顾了控制这些表面的演变的运动学保护法(KCL)的理论,并由第二作者及其合作者开发。 KCL是保护形式中最通用的方程式,以物理逼真的奇异性来管理ωt的演变。一种非常特殊的奇点类型是扭结,当ωt是r2andisacurveonωt中时,当ωt是ωtiSasurfaceinr3时,这是ωt上的点。 ωt的跨kinkinkthenormalntoΩt和ωt上的正常速度M是不连续的。本文的主要目的是确定我们不早于的KCL的保守变量的密度和通量的密度。本文的介绍就像在流行的文章中一样,该文章旨在实地非专家。

In a wide range of physical phenomena, we find propagating surfaces Ωt which need mathematical treatment. In this article, we review the theory of the system of kinematical conservation laws (KCL), which govern the evolution of these surfaces and have been developed by the second author and his collaborators. KCL are the most general equations in conservation form, governing the evolution of Ωt with physically realistic singularities. A very special type of singularity is a kink, which is a point on Ωt when Ωt is a curve in R2 andisacurveonΩt whenΩt isasurfaceinR3. AcrossakinkthenormalntoΩt and the normal velocity m on Ωt are discontinuous. The main aim of this article is to identify density of the conserved variable and the flux for the KCL which we did not do earlier. The presentation of this article is like that in a popular article, which which aims at non-experts in the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源