论文标题

NLSE在3D中具有点缺陷的基态的存在,结构和鲁棒性

Existence, structure, and robustness of ground states of a NLSE in 3D with a point defect

论文作者

Adami, Riccardo, Boni, Filippo, Carlone, Raffaele, Tentarelli, Lorenzo

论文摘要

我们研究了Schrödinger方程的基础状态,并在第三维度中进行了焦点非线性和点相互作用。我们确定质量的每个价值都存在基态。此外,它们是正面的,径向对称,沿着径向的方向减小,并在点相互作用的位置显示出库仑的奇异性。值得注意的是,基态的存在与点相互作用的有吸引力或排斥性无关。

We study the ground states for the Schrödinger equation with a focusing nonlinearity and a point interaction in dimension three. We establish that ground states exist for every value of the mass; moreover they are positive, radially symmetric, decreasing along the radial direction, and show a Coulombian singularity at the location of the point interaction. Remarkably, the existence of the ground states is independent of the attractive or repulsive character of the point interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源