论文标题

层次分类中的设定值预测,具有约束表示复杂性

Set-valued prediction in hierarchical classification with constrained representation complexity

论文作者

Mortier, Thomas, Hüllermeier, Eyke, Dembczyński, Krzysztof, Waegeman, Willem

论文摘要

设定值预测是多级分类中的一个众所周知的概念。当分类器不确定测试实例的类标签时,它可以预测一组类,而不是单个类。在本文中,我们关注分层多类分类问题,其中有效集(通常)对应于层次结构的内部节点。我们认为这是一个非常强大的限制,我们通过引入预测集的表示复杂性的概念来提出放松。结合概率分类器,这导致了一个充满挑战的推论问题,需要特定的组合优化算法。我们提出了三种方法,并在基准数据集上评估它们:一种基于矩阵向量乘法的幼稚方法,将冲突图作为背包问题的重新制定以及一种递归树搜索方法。实验结果表明,由于条件类别分布的层次分解,最后一种方法在计算上比其他两种方法更有效。

Set-valued prediction is a well-known concept in multi-class classification. When a classifier is uncertain about the class label for a test instance, it can predict a set of classes instead of a single class. In this paper, we focus on hierarchical multi-class classification problems, where valid sets (typically) correspond to internal nodes of the hierarchy. We argue that this is a very strong restriction, and we propose a relaxation by introducing the notion of representation complexity for a predicted set. In combination with probabilistic classifiers, this leads to a challenging inference problem for which specific combinatorial optimization algorithms are needed. We propose three methods and evaluate them on benchmark datasets: a naïve approach that is based on matrix-vector multiplication, a reformulation as a knapsack problem with conflict graph, and a recursive tree search method. Experimental results demonstrate that the last method is computationally more efficient than the other two approaches, due to a hierarchical factorization of the conditional class distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源