论文标题
注:
Note on large-$p$ limit of $(2,2p+1)$ minimal Liouville gravity and moduli space volumes
论文作者
论文摘要
在本说明中,我们报告了二维Liouville Gravity的相关数字的某些属性,并在$ p $上$(2,2p+1)$(2,2p+1)$最小型号。在限制$ p \至\ infty $中,对于特定的参数空间相关数字中的一些明确已知的示例,显示为减少到Weil-petersson的体积,在分析上继续进行假想的地球长度。这标志着此限制与JT-Gravity的另一个连接。我们还评论了该区域以外的答案的假定几何含义,尤其是最小模型融合规则的含义。另一个观察结果是,与相关器的参数相比,当$ p $足够大时,相关数与共形块数量的比例。即使没有限制,这种比例也是有效的。
In this note we report on some properties of correlation numbers for 2-dimensional Liouville gravity coupled with $(2,2p+1)$ minimal model at large $p$. In the limit $p \to \infty$, for some explicitly known examples in a particular region of parameter space correlation numbers are shown to reduce to Weil-Petersson volumes, analytically continued to imaginary geodesic lengths. This marks another connection of this limit with JT-gravity. We also comment on supposed geometric meaning of the obtained answers outside of this region, in particular, the meaning of the minimal model fusion rules. Another observation is the proportionality of correlation number to the number of conformal blocks when $p$ is big enough compared to parameters of the correlator. This proportionality is valid even without taking the limit.