论文标题

1位压缩感应的叠加CSI反馈的深度学习

Deep Learning for 1-Bit Compressed Sensing-based Superimposed CSI Feedback

论文作者

Qing, Chaojin, Ye, Qing, Cai, Bin, Liu, Wenhui, Wang, Jiafan

论文摘要

在频划分双链(FDD)中,大量的多输入多输出(MIMO)系统,1位压缩感测(CS)基于基于叠加的叠加通道状态信息(CSI)反馈已经显示出许多优势,而仍然面临许多挑战,例如Downink CSI CSI恢复和大型处理范围较低的挑战。为了克服这些缺点,本文提出了一种深度学习(DL)方案,以改善1位压缩感应的叠加CSI反馈。在用户端,下行链路CSI被1位CS技术压缩,在上行链路用户数据序列(UL-US)上叠加,然后发送回基地站(BS)。在BS上,基于模型驱动的方法,并在叠加干扰取消技术的帮助下,首先构建了多任务检测网络,用于检测UL-US和下链路CSI。特别是,该检测网络经过联合训练,以同时捕获全球优化的网络参数,以同时检测UL-US和下行链路CSI。然后,使用下行链路CSI的回收位,使用简化的传统方法和单个隐藏层网络的下行链路CSI的初始特征提取了轻巧的重建方案,可用于重建下链路CSI,并以低处理延迟。与基于1位CS的叠加CSI反馈方案相比,提出的方案提高了UL-US和下行链路CSI的恢复精度,并具有较低的处理延迟,并具有针对参数变化的鲁棒性。

In frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems, 1-bit compressed sensing (CS)-based superimposed channel state information (CSI) feedback has shown many advantages, while still faces many challenges, such as low accuracy of the downlink CSI recovery and large processing delays. To overcome these drawbacks, this paper proposes a deep learning (DL) scheme to improve the 1-bit compressed sensing-based superimposed CSI feedback. On the user side, the downlink CSI is compressed with the 1-bit CS technique, superimposed on the uplink user data sequences (UL-US), and then sent back to the base station (BS). At the BS, based on the model-driven approach and assisted by the superimposition-interference cancellation technology, a multi-task detection network is first constructed for detecting both the UL-US and downlink CSI. In particular, this detection network is jointly trained to detect the UL-US and downlink CSI simultaneously, capturing a globally optimized network parameter. Then, with the recovered bits for the downlink CSI, a lightweight reconstruction scheme, which consists of an initial feature extraction of the downlink CSI with the simplified traditional method and a single hidden layer network, is utilized to reconstruct the downlink CSI with low processing delay. Compared with the 1-bit CS-based superimposed CSI feedback scheme, the proposed scheme improves the recovery accuracy of the UL-US and downlink CSI with lower processing delay and possesses robustness against parameter variations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源