论文标题

sobolev代数在谎言组和非交通性几何形状上

Sobolev algebras on Lie groups and noncommutative geometry

论文作者

Arhancet, Cédric

论文摘要

我们表明,存在一个量子紧凑的度量空间,该空间是基于与下细胞laplacian $δ= - (x_1^2+\ cdots+cdots+x_m^2)$相关的每个sobolev代数的设置。 $(g,x)$的尺寸,其中$ 0 <α\ leq 1 $。我们还提供了该结果的局部紧凑型变体,并为实际的二阶次要算子提供了概括。我们还引入了一个紧凑的光谱三重(=非交通歧管)与紧凑型组上的每个下laplacian相关联。此外,我们表明其光谱维度等于$(g,x)$的局部尺寸。最后,我们证明了Conners频谱伪内,使我们能够恢复Carnot-Carthéodory距离。

We show that there exists a quantum compact metric space which underlies the setting of each Sobolev algebra associated to a subelliptic Laplacian $Δ=-(X_1^2+\cdots+X_m^2)$ on a compact connected Lie group $G$ if $p$ is large enough, more precisely under the (sharp) condition $p > \frac{d}α$ where $d$ is the local dimension of $(G,X)$ and where $0 < α\leq 1$. We also provide locally compact variants of this result and generalizations for real second order subelliptic operators. We also introduce a compact spectral triple (=noncommutative manifold) canonically associated to each subelliptic Laplacian on a compact group. In addition, we show that its spectral dimension is equal to the local dimension of $(G,X)$. Finally, we prove that the Connes spectral pseudo-metric allows us to recover the Carnot-Carathéodory distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源